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SOME SIMILARITY PROBLEMS OF THE UNSTEADY BOUNDARY LAYER 

E. V. Prozorova I~DC 533.6 

It was shown in [i] that problems of the nonstationary boundary layer are similarity 
problems for impulsive motion of an incompressible fluid and motions accelerating with a 
power law. Some results for an incompressible fluid are presented below. 

w We consider motion of a semiinfinite flat plate in a compressible liquid, impul- 
sively set into motion. The system of equations for this case [2] is as follows: 

Pkot+u~-x-r'v-$f =-$f ~EF; 
ap a , a 

a--/+ T~ (~u) -r ~ (~v) = O; 

(Oh,+ oh Oh) " o~ ' ~ o ( o h )  

u = U e ,  v = O  for g = 0 ,  t = O; 

u = O, v = 0 for y = O, t > 0 ;  

u = Ue, h =-he,  g--+oo.  

The notation is conventional; the viscosity ~, the thermal conductivity k, and the equation 
of state are all arbitrary functions of temperature and density. We choose 
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u ---- ( l ) ( [ ,  Vl) , v = V ( [ ,  ~l) l t ' /2,  ~ = x / t ,  ~l = Y~ t'/~, h = l~{~, ~l), 

p = ~(~, ~), i.e., we convert to a system of similarity variables. Then 

[ ~I) t ao ao ~ a o ]  a [ - 0o] 

, o~ o o 
- ~ - - r  ~ ~ + ~ (~r + ~,, ( ~ )  = o; 

The boundary conditions are 

r  ~ = ~ ,  n=0,  ~>0, 
= U~, h - =  h~, ~ - - + o o .  

For simplicity, the Prandtl number is assumed to be constant. The possibility of using 
similarity variables for the arbitrary functions u, X and the equation of state arises from the 
fact that u, h, p, for which initial and boundary conditions are given, are not equal to zero 
and are not explicit functions of time, as v is, for example. In difference form the equa- 
tions of motion and energy are [we omit the bar above the symbols, T = (T -- Tw)/(T e -- Tw), 
and h = Cp T ] 

o{ +'-o{ I ~ I I r/i+~ , , ,J+ ,  
- 1 '4ni+i �9 At (uer  p~+12A,~ L~+, + ~i +') - 

�9 i O.;-i-~ mJ4-1 } - ' -  ( __ ) ~+, - -~ i  _ ~,,+,r.J+, + 2~{+'. + , , .- ," J+'~ r + ( J+' -" ~{-+~) r = , , ,  v{ +' 4,1,_ ~ ,  ; 

r{+, - r{ , I~{ +' (r, ,) v-"e *(J• --~J+"~'~+, ~, *~'+" 
A~ = (UeO{-Fi - -  ~i) [ CppJi -l-! r e - -  r w  A1|2 

I [( .  i + ,  + 1~{+,) ,,,J+, J+,  ' ' _~ ~+t ~A..~,,,+, -,+,-(~,+,+2~ V'+~+A)r{+'+ 

+ (, i+'+ ~{+;) r ~+'] (v{+, , , ~J+, ~J+,~ �9 ~ - i j  - -  ' - - - } -  ~ i )  a , !  ]" 

We determine the normal v e l o c i t y  component from the  cont inui ty  equation by i n t eg ra t i on .  
The r e s u l t s  of v e l o c i t y  p r o f i l e  ca l cu l a t i ons  are shown in Fig. i ,  and compared with an incom- 
p r e s s i b l e  l i q u i d ,  for  U e = 2880 cm/sec, T w = 500~ Te = 2400~ o = 0.7 [ i )  ~ = 0.025, com- 
p r e s s i b l e  gas; 2, 3) incompressible l i q u i d ,  ~ = 0.05, ~ = 7.55, v = 0.15; 4) ~ = 8.525, com- 
p r e s s i b l e  gas, ~ = 21.275 f a l l s  on th i s  same curve; and 5) ~ = 7.55, ~ = 2.25, incompressi- 
b le  liquid]. A similar PiCture is obtained for the temperature. 

w We consider formation of the boundary layer behind a traveling shock wave on a thin 
s emiinfinite flat plate [2]. We denote by 8 the rate of propagation of the shock wave and by 
V, the velocity of the secondary gas flow behind the shock; we reverse the motion in such a 
way that the shock wave becomes stationary. The boundary-layer region is bounded by x = 0t. 
The system of equations here is the same as in the previous problem, and the boundary condi- 

tions are 

u :  v : O ,  h = h ~ ,  y = 0 ,  x > O ,  
u = U~, h : h ~ ,  y = oo, x < O t ,  
u : 0 ,  h = h o ,  y : oo, x > O t ,  

where U e = e --V. 

The enthalpy, velocity, and density at the outer edge are determined by the Hugoniot re- 
lations. The results of the computation are shown in Fig. 2, for M~ = 3, o = 0.7, p~ = 
0.00129 g/cm a [i) ~ = 0.05; 2) ~ = 24.5; 3) ~ = 30.3; 2 and 3 coincide]. The dependence of 

the dimensionless temperature profile on E has the same form. 

w We consider a semiinfinite flat plate set impulsively into motion in a conducting 
gas with small magnetic Reynolds number Re H. A magnetic field of inductance By,o is applied 
perpendicular to the direction of motion of the main flow. 
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The equations can be written in the form [3] 

op o o 
o--i- + "~Z (pu) + -b7 (pv) = O, 

at @ u--~x + v ag p az @ - p  -a-yy ~-@y -p -B y ,~  

( aT) Op 0 [~OT~ {OU~2 ~_0/~2B20" or or v ~  u ~  ~ k  ~ ]  \0y] 
cpp W + u ~ - z  + - - ~ t  + + + ~  , 

F o r  s i m p l i c i t y ,  we c o n s i d e r  t h e  e q u a t i o n  o f  s t a t e  o f  a p e r f e c t  g a s ;  f o r  ~, X,we choose  a 
power  d e p e n d e n c e  on t e m p e r a t u r e ;  o ,  By,o a r e  c o n s t a n t .  A f t e r  i n t r o d u c i n g  

p = "p(~, x I, t), T = T- (E, ~l, t), u - -  (D(~, q, t), 

v - = F ( ~ , n , t ) l  ti12, ~l :Y/ t t12,  E = x / t ,  T : : ( T - - T , ~ ) / ( T e - - T ~ )  

we obtain 

- -  -:7- q a - q t  ._ ap _ ~ a~- @ T @ ._~T~_ _ a  (p~} a (pv) = O, 

t 00 Off) ~ 00 VOcD-- I 0 [ OT] ~0_2  : 
~-~+ ~+ a,l p ~[t~j-T~,ot, 

The problem is not completely self-similar, but the use of similarity variables allows us to 
obtain a parametric dependence on time, and the parameter is, in fact, the quantity oB~ ot. 
Therefore, a calculation for any one value of this group allows us to obtain a solution'for 
a wide set of values By,o, o, t. The results of the calculation of velocity are shown in 
Fig. 3, where i) ~ = 0.0125; 2) ~ = 1.1375~ 3) ~ = 1.7; 4) ~ = 4.5125 for small values of 
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time (t = 0.01 set). The crosses correspond to t = 0.5, ~ = 1.1375 and the circles, to t = 
0.7, ~ = 1.1375. Initially the curves coincide. We observe a noticeable decrease in fric' 
tion and heat flux far from the nose, when the magnetic field is present. By solving the 
problem we can check that the contribution of the time derivatives is small. 

w We consider the problem where a flat plate begins to move suddenly in a conducting 
gas at large magnetic Reynolds number Re H. An electric current passes through the plate per- 
pendicular to the flow (the current is switched on at the time the motion begins and is in- 
sulated from the plasma), inducing a magnetic field in the plasma. When the incident flow 
plasma has high conductivity, the magnetic field due to currents within the wall is localized 
in a region close to the wall surface. 

The equations of the dynamic, thermal, and magnetic boundary layers have the form [3] 

Op 0 0 
o-7 + ~ (ou) + W (pv) -.: o; 

OH OH OH 
Ot x -~- U ---E V ~ Ov O+t 0 [ OHx~ 

Ox + Ov + H~-~'v - -  Hv  ~ "  v = o-Tf [vn--~y j; 

OH x , OHy = O; 
O'--ff - r  Oy 

p k ~_f q_ u_.~ + v.w.~, l _ ~teH v . Op 0 
Oy O-'~- + ~ ; 

2 
P + - U  p,~H~ == Po (x);  

Oh Oh Oh o - ~ + u ~ + v ~ ) =  Op Op Op o ~-bv-v ~ k--~u ] " 
y f + u ~ + v ~  + ~ + ~ , s )  + 

Here we use the Gaussian system of units, and the notation is conventional. As before we 
seek a solution in the form 

p = T ( I ,  ~), h = h ( i ,  ~), ,, = o(~, ~), H= = i = ( ! ,  ~), 
- -  l , o  H v = H v / t J " ,  where ~ = x / t ,  ~l --= Y/lt'+ 

We o m i t  t h e  b a r  a b o v e  t h e  s y m b o l s  (h = CpT) .  A f t e r  s u b s t i t u t i n g  i n  t h e  e q u a t i o n ,  we o b t a i n  

op i . 0p 0 (pO) 0 (pV) = 0; 

~ o~= i OH= oH v ~~ ov or o f ov A 

OH x OHy 
+ ~ -  = o ;  

2 
P0 .... p + ~ -  ~eH~ = const; 

oo ~ oo oo  V ~ 1 7 6  o~.~ O H  o ( oo~.  

oh t oh O h + V O h ' ~ =  Op 

o r  

= _ ~ \ - ~ - ]  �9 

We use an implicit difference scheme to solve the problem. Two blocks were isolated in 
the calculation. In the first block we simultaneously use the method of matrix forcing to 
solve the equations of motion and energy until the iterative process is completed. In the 
second block we find the magnetic field intensity profiles. The solution process in layer ~i 
is considered to be ended when all the profiles have been calculated with a given accuracy. 
The accuracy must be kept high, to avoid a substantial accumulation of errors with increase 
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of ~. The distribution of magnetic field intensity H x is given in Fig. 4 [i) ~ = 0.0125; 
2) ~ = 4.137, U e = 0.2.105 cm/sec]; and V, ~, v H are considered to be power series functions 
of the density and temperature. 

The above program was chosen because of the capabilities of the M-222 computer memory. 
It may seem that the use of matrix forcing for simultaneous computation of all the desired 
quantities would lead to more rapid solution of the problem. It should be noted that, while 
the accuracy of the increase of the vertical velocity component is not important in calculat- 
ing the unsteady boundary layer for an incompressible liquid, and the results vary only by a 
few Percent when this is totally omitted; nevertheless, this component requires accurate com- 
putation for a compressible liquid. 
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INTERNAL RESONANCES IN HYDRODYNAMICS 

Yu. B. Ponomarenko UDC 534.533.6.011 

w In the theory of the vibrations of systems close to linear [I], internal resonance 
is defined as the proportionality of several natural frequencies to natural numbers. The 
present article discusses internal resonances in hydrodynamics. 

In the case of internal resonance, forced vibrations of small amplitude, brought about 
by a harmonic perturbation, can differ considerably from harmonic. An example is discontin- 
uous vibrations of a gas (shock waves), observed in a closed tube with a harmonic motion of 
a piston [2, 3]. 

Autovibrations of small amplitude can also be essentially nonharmonic, for example, au- 
tovibrations in a low-pressure gas discharge [4]. 

The main features of resonances come out with the consideration of the boundary-value 
problem for the real vector X: 

OX n 
o'--i + L1X + L2X2 + . . . .  ~, ehC~e~~ c.c., UX = 0 (1.1) 

(c.c. is an expression, complex-conjugate to the preceding). Here the real coefficients L 
and the matrix U in the boundary condition can depend on the coordinates x and are polyno- 
mials with respect to D = ~/~x. The region of change of x is assumed to be bounded. Each 
perturbation with the frequency mk > 0 and the form Ck(x ) is proportional to a small ampli- 
tude e k. The frequencies mk and their differences are assumed to be fairly great (the ef- 
fects of the type of slow change in the parameters are not taken into consideration here). 
It is postulated that the problem 

p X  -~ L1X = 0 ,  UX = 0  (1.2) 

has several simple eigennumbers p = y + i~, with small increments of y and positive frequen- 
cies ~. Let these be the numbers Pm (m = i, 2, , M), the corresponding eigenfunctions 
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